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ABSTRACT

ADeep Learning Framework for Spatiotemporal Feature Extraction
and Characterization of Synchrotron X-Ray Computed Tomography

in Stress Corrosion Cracking of AlMg
Thomas Ciardi

Spatiotemporal studies of material degradation have advanced significantly with
the advent of high-resolution imaging techniques like synchrotron X-ray com-
puted tomography (XCT). However, themassive Terabyte-scale datasets generated
by these systems pose substantial challenges for analysis. Using environmental-
induced cracking inmarine-grade aluminum alloys as a case study, we introduce
an integrated framework combining domain-informed diversity sampling and
weak supervision strategies to enable automated microstructural analysis. Our
novel diversity evaluation metric unifies embedding space coverage, perceptual
similarity,andphysical state representation,demonstratingourDomain-Informed
Diversity Sampling (DIDS) achieves higher feature space coverage (average sam-
ple cosine distance improvement of +35-45% above baselines), broader displace-
ment ranges (degradation state coverage of +10-45% above baselines), whilemain-
taining superior perceptual diversity (DIDS: 0.358, ProbCover: 0.338, TypiClust:
0.324, Random: 0.315). Through weak supervision of only 90 images (<0.03% of
the dataset), we achieve automated segmentationmean F1 scores of 0.949 (mean
IoU of 0.646) in identifying over 5 million features with one sub-visible feature
class being only 12 pixels in area on average. Applied to stress corrosion crack-
ing analysis across 300,000+ images, this framework demonstrates unprecedented
scalability in microstructural characterization. Our approach provides a general
template for transforming massive materials characterization datasets into sys-
tematic, automated analyses while minimizingmanual annotation requirements.
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1 Introduction

1.1 High-level Background

Aluminum-magnesium (AlMg) alloys are crucial in marine applications due to
their combination of high strength, low density, and strong corrosion resistance
in saline environments and low temperatures1. AA5xxx series alloys, in particular
AA5083, arewidely used as amarine-gradematerial ship buildingmaterial2. These
material systems, however, suffer structural integrity issues with prolongedmar-
itimeservice3,4. Specificallyenvironmentally inducedcracking (EIC)phenomenon
composed of a spectra of stress corrosion cracking (SCC) and hydrogen embrittle-
ment (HE) mechanisms5. EIC can occur at stress regimes below the yield strength
of thematerial and result in catastrophic failures, posing significant safety risks to
maritime structures and vessels6.

Historically, studying EIC has been difficult due to lack of instrumentation to
capture and characterize these microscale mechanisms. Advancements in experi-
mentation techniques and imaging technologies, however, havemade it possible
to study these degradation phenomena at appropriate time and length scales7.
For example, synchrotron X-ray computed tomography (XCT) provides unprece-
dented capabilities for non-destructive, time-resolved imaging of crack initiation
and propagation8. This allows for detailed tracking of crack networks, their mor-
phology, and interaction with microstructural features to understand EIC9. The
capture rates of these systems, however, generate a new problem; data at scale.
Synchrotrons can capture information on the order of GB/s, presenting massive
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Introduction 3

data storage and analysis challenges10. Extractingmeaningful quantitative infor-
mation from these large 4D datasets to characterize the complex spatiotemporal
behavior remains an open challenge.

This problem is not unique to characterization of EIC in AlMg, however. Ma-
terials science as a discipline has evolved to consistently generate vast amounts
of data through experimentation. Effectively leveraging this scale of information
requires scalable data engineering,machine learning, and high performance com-
puting. The ability to successfully integrate materials science domain knowledge
anddata science together, enables the ability to study themechanismsandscience
behindmaterials at new scales.

1.2 Research Objectives and Contributions

This research addresses fundamental challenges in characterizing environmental-
induced cracking (EIC) in AlMg alloys through synchrotron XCT. While modern
characterization techniquesenablehigh-resolution4Ddatacollection, twocritical
challenges emerge in extractingmeaningful insights from thesemassive datasets.

First, we confront the cold-start problem in spatiotemporal materials charac-
terization, where effective samplingmust capture both spatial features and their
temporal evolution without prior knowledge of the degradation process. Modern
synchrotron XCT experiments generate hundreds of thousands of images span-
ningmultiple temporal states, but conventional sampling approaches struggle to
identify representative subsets that adequately cover both the feature space and
degradation progression. This challenge is particularly acute inmaterials science,
where physical state evolutionmust be captured alongside spatial characteristics.

Second, we address the challenge of characterizing subvisible features in low-
resolution tomography images,where criticalmicrostructural elements exist at the
limits of pixel-level detection. Intermetallic inclusions, crucial to understanding
crack initiation andpropagation,manifest as featuresmerely 12pixels in area,with
hundreds present in each image. This creates an extreme annotation challenge
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where traditional manual approaches become infeasible, particularly given the
need to identify and characterize millions of features across our dataset.

Our integrated framework addresses these challenges through four key contri-
butions:

(1) A novel composite quality assessment framework that unifies embedding
space coverage, perceptual similarity, and physical state representation
into a single metric for evaluating sampling effectiveness in spatiotempo-
ral datasets.

(2) Domain-InformedDiversity Sampling (DIDS) that achieves higher feature
space coverage (average sampled cosine distance improvement of +35-
45% above baselines), broader displacement ranges (degradation state
coverage of +10-45%above baselines),whilemaintaining superior percep-
tual diversity (DIDS: 0.358, ProbCover: 0.338, TypiClust: 0.324, Random:
0.315) within selected samples.

(3) A scalable weak supervision pipeline achieving 0.949mean F1 score and
0.646mean IoU using only 90 annotated images (<0.03%) from a 300,000+
image dataset.

(4) Automated detection and characterization of over 5 million microstruc-
tural features, including subvisible intermetallic inclusions averaging 12
pixels in area, enabling comprehensive analysis of material degradation
at unprecedented scale.



2 Literature Review

This chapter summarizes the theoretical basis for relevant materials science
and data science concepts within this work. The chapter also surveys the intersec-
tion of machine learning with materials science and its specific applications to
synchrotron X-ray computed tomography (XCT).

2.1 Materials Domain

2.1.1 5000 Series Aluminum Alloys

5000 series aluminum alloys constitute a fundamental class of non-heat-treatable
materials that derive their strength primarily through solid solution hardening
withmagnesium11. The addition ofmagnesium, typically ranging from 4-5 weight
percent, not only provides significant strengthening through solid solution effects
but also maintains excellent weldability and formability characteristics2. These
alloys, particularly AA5083, have found extensive use inmarine and naval applica-
tions due to their exceptional combination of high strength, low density, and good
corrosion resistance in saline environments1.

This class of alloys, however, faces a critical challenge regarding microstruc-
tural stability. At temperatures as low as 40 °C, commonly encountered in opera-
tional conditions, magnesium exhibits a tendency to precipitate from the solid
solution3. This precipitation occurs preferentially at grain boundaries, resulting
in the formation of β-phase (Al3Mg2)12,13. This phase is highly anodic compared to
the aluminummatrix and creates conditions favorable for localized corrosion14–17.
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Literature Review 6

The amount of β-phase precipitation at grain boundaries, quantified as the degree
of sensitization (DoS), significantly influences the alloy’s susceptibility to various
forms of corrosion and environmental cracking18–20.

2.1.2 Stress Corrosion Cracking

Stress corrosion cracking (SCC) is a complex failuremechanism that emerges from
the interaction between a material, tensile stress, and a corrosive environment5.
In 5000 series aluminum alloys, this phenomenon manifests primarily as inter-
granular stress corrosion cracking (IGSCC), where crack propagation follows grain
boundaries21. The crack propagation pattern in these alloys often shows complex
branching behavior, withmultiple crack paths developing simultaneously15.

The mechanism involves multiple interacting processes: anodic dissolution
of the sensitized grain boundaries, hydrogen generation and uptake at crack tips,
and mechanical loading effects13. The interaction between mechanical loading
and environmental factors creates distinct stages of crack evolution: initiation,
stable growth, and final failure22. The process typically initiates at surface defects
or corrosion sites and can propagate at stress levels well below thematerial’s yield
strength3. This makes SCC particularly dangerous as failures can occur without
warning under normal service loads6.

2.1.3 Synchrotron X-Ray Computed Tomography

X-ray computed tomography (XCT) represents a non-destructive imaging tech-
nique for studyingmaterial behavior atmultiple length scales. XCThas been exten-
sively used to image corrosion in AlMg alloys to better understand the degradation
mechanisms7,9. Synchrotron XCT offers even higher-resolution capabilities to ex-
amine electrochemically andmechanically driven events in SCC. The technique
utilizes high-energy X-rays generated by electron acceleration in a synchrotron
facility to create three-dimensional representations of material structure23.

The key advantage of synchrotron XCT over conventional laboratory sources
lies in its high flux and coherence, enabling rapid acquisition of high-resolution
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data. The high temporal resolution allows for time-resolved imaging during me-
chanical testing, while the spatial resolution can capture fine details of crack net-
works andmicrostructural features8,24. The technique provides sufficient contrast
todistinguishbetweendifferentphases,voids,andcrackswithin thematerial,mak-
ing it particularly suitable for studying the relationship betweenmicrostructural
features and crack evolution25.

Synchrotron XCT, however, generates large volumes of data, with each scan
typically producing several gigabytes (GB) of information. Experiments can pro-
duce hundreds of scans, generating datasets that are consistently on the order of
terabytes (TB) in size26. This data richness provides unprecedented opportuni-
ties for studyingmaterial behavior but also presents significant challenges in data
management, processing, and analysis10.

2.2 Data Science Domain

2.2.1 Dimensionality Reduction

Dimensionality reduction techniques transformhigh-dimensionaldata into lower-
dimensional representations while preserving essential characteristics. This en-
ables computational analysis at larger scales with increased efficiency by address-
ing the curse of dimensionality and removing uninformative noise.

Principal component analysis (PCA), is a foundational linear technique that
identifies orthogonal axes ofmaximumvariance in the data27. The transformation
is defined by:

Xreduced = XW

whereW contains the top k eigenvectors of the covariancematrixXXT .
t-distributed Stochastic Neighbor Embedding (t-SNE) is a staple non-linear

dimensionality reduction technique that aims to retain local structures28. The ap-
proachmodels similarities between points as conditional probabilities:
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pj|i =
exp(−|xi − xj|2/2σ2

i )∑
k ̸=i exp(−|xi − xk|2/2σ2

i )

where the similarity of data point xi to xj is the conditional probability pj|i that
xi would be the neighbor of xj if selected in proportion to their probability density
under a Gaussian centered at xi.

UniformManifold Approximation and Projection (UMAP) provides a theoreti-
cally grounded alternative to t-SNE based on Riemannian geometry and algebraic
topology29. It constructs a fuzzy topological representation of high-dimensional
data and optimizes a low-dimensional layout that aims to preserve both global
and local structure through:

∑
i,j

[
vij log

(
vij
wij

)
+ (1− vij) log

(
1− vij
1− wij

)]
where vij and wij represent high and low-dimensional similarities respectively.

2.2.2 Clustering Algorithms

Unsupervised learning represents a fundamental paradigm inmachine learning
where algorithms discover inherent patterns and structure in data without labeled
examples. Within this domain, clustering serves as a core technique that aims to
partitiondatapoints into groups (clusters) such thatpointswithin the samecluster
are more similar to each other than to those in other clusters, typically measured
through some distance or density metric.

K-means clustering represents one of themost simple andwidely adopted par-
titioning methods30. The algorithm iteratively assigns points to the nearest of k
centroids and updates these centroids based on cluster membership, minimizing
the within-cluster sum of squares:

J =
k∑

i=1

∑
x∈Ci

|x− µi|2

where Ci represents the i-th cluster and µi its centroid. Despite its simplicity,
k-means has proven remarkably effective across diverse applications, though it
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assumes spherical cluster shapes and requires prior specification of the number
of clusters.

Density-based clusteringmethods emerged to address these limitations, with
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) represent-
ing a significant advance31. DBSCAN defines clusters as dense regions separated
by areas of lower density, using two key parameters: the neighborhood radius (ϵ)
and the minimum number of points required to form a dense region (MinPts).
The density around a point p is estimated through:

Nϵ(p) = q ∈ D | dist(p, q) ≤ ϵ

whereD is thedatasetanddist is adistancemetric. Apointp is consideredacore
point if |Nϵ(p)| ≥ MinPts. This approach effectively identifies arbitrary-shaped
clusters and naturally handles noise, though parameter selection can significantly
impact results.

HDBSCAN (Hierarchical DBSCAN) further advances density-based clustering
by eliminating the need for a fixed density threshold32. The algorithm constructs
a hierarchical cluster tree and extracts a flat clustering that optimizes cluster sta-
bility across different density levels. This adaptation provides robust performance
across varying density scales while maintaining DBSCAN’s capability to identify
arbitrary-shaped clusters. By converting DBSCAN into a hierarchical clustering
algorithm, HDBSCAN effectively handles clusters of varying densities within the
same dataset.

2.2.3 Machine Learning

Machine learning encompasses computational methods that enable systems to
improve their performance on a task through experience. At its core, supervised
learning involves finding a function f that maps inputs x to outputs y byminimiz-
ing a loss function L(y, f(x)) over a training dataset.

The fundamental building block, a neural network layer, performs the opera-
tion:
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h = σ(Wx+ b)

whereW represents learnable weights, b is a bias term, and σ is a non-linear ac-
tivation function33. Modern networks stackmultiple such layers, with each subse-
quent layer learning increasingly abstract features. The learning process employs
backpropagation, where gradients of the loss function are computed with respect
to parameters:

∂L

∂W
=

∂L

∂h

∂h

∂W

2.2.4 Deep Learning

Deep learning is a subset of machine learning that extends early foundations of
artificial neural networks to provide state of the art performance in various tasks
including natural language processing, image classification, and generative mod-
eling. Here we describe several key modern architectures and their underlying
structures.

Convolutional Neural Networks (CNNs) revolutionized computer vision by in-
troducing architecturally-enforced spatial structure through convolution opera-
tions34:

(f ∗ g)(p) =
∑
s+t=p

f(s)g(t)

where f is the input (e.g., image or feature map), g is the convolution kernel
(learnable filter), p represents the output position, s and t are positions in the input
andkernel respectively, and ∗denotes the convolution operation. The convolution
operation learns local feature detectors that scan across the input space, providing
translation invariance and parameter efficiency.

Modern CNN architectures combine three essential components for effective
visual processing. Convolutional layers form the backbone, using learnable filters
to detecthierarchical patterns atdifferent scales,witheach layerbuildingupon fea-
tures learned by previous ones through non-linear activation functions. Pooling
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operations provide spatial downsampling by selecting maximum values within
local neighborhoods, reducing complexity while maintaining key features and
providing translation invariance. Batch normalization stabilizes training by nor-
malizing layer activations usingmini-batch statistics, enabling faster convergence
through learnable scale and shift parameters. Together, these components create
a powerful hierarchy of feature detection, spatial summarization, and activation
normalization that has revolutionized computer vision tasks.

The introduction of attentionmechanisms, through the Transformer architec-
ture, marked a fundamental advance in sequencemodeling and neural architec-
ture design35. At its core, the Transformer relies on self-attention operations that
compute weighted relationships between all pairs of features in a sequence:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

whereQ,K, andV represent query, key, and valuematrices respectively, derived
from learned linear projections of the input sequence: Q = XWQ,K = XWK ,
V = XW V . The querymatrix represents features doing the attending, while keys
represent features being attended to, and values contain the features to be aggre-
gated. The scaling factor √dk prevents extremely small gradients in the deeper
layers of the network.

TheTransformerextends thismechanism throughmulti-headattention,which
enablesparallel attention computations acrossdifferent representation subspaces.
Multiple sets of Q, K, V projections operate independently before being concate-
natedandprojected to thefinaloutput. Thismulti-headstructureallows themodel
to simultaneously capture different types of dependencies and relationships at
various scales and semantic levels, significantly enhancing themodel’s ability to
process complex sequential data.

2.2.5 Image Segmentation

Semantic segmentation, thepixel-wise classificationof images, represents a funda-
mental technique for detailed visual analysis across diverse application domains.
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Contemporaryapproachespredominantlyemployencoder-decoderarchitectures,
where the encoder extracts hierarchical feature representations while the decoder
reconstructs detailed segmentationmaps from these features. This architectural
paradigm enables both efficient feature extraction and precise spatial reconstruc-
tion.

The effectiveness of segmentation models is commonly evaluated using the
Intersection over Union (IoU)metric:

IoU =
|A ∩B|
|A ∪B|

where A represents the predicted segmentation mask and B represents the
ground truthmask. This metric quantifies the overlap between predicted and ac-
tual segmentations, providing a robust measure of segmentation accuracy.

2.2.6 Deep Learning Segmentation Architectures

Deep learning architectures for semantic segmentation have evolved to address
the fundamental challenge of simultaneouslymaintaining global context and fine
spatial detail in dense pixel-wise predictions. This evolution spans from CNN-
based encoder-decoder structures to recent transformer-based approaches, each
introducingnovelmechanisms formulti-scale feature processing and information
flow.

U-Net pioneered a symmetric encoder-decoder architecture that revolution-
izedmedical imagesegmentation through itsdistinctive skipconnectionsbetween
corresponding encoder and decoder layers:

f l
decoder = Up(f l−1

decoder)⊕ f l
encoder

where⊕denotes concatenation,Up represents upsampling, and l indicates the
layer level. The contracting path captures contextual information through succes-
sive convolution andpooling operations,while the expansive path enables precise
localization through upsampling and feature concatenation36.
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UPerNet advances these capabilities by introducing a unified framework for
multi-scale feature processing, combining a Pyramid Pooling Module (PPM) for
global context capture with a Feature Pyramid Network (FPN) for bidirectional
information flowacross resolution levels. Thismulti-scale fusion strategy, coupled
with a flexible backbone network, enables effective handling of complex scene
parsing tasks across varying scales and semantic categories37.

SegFormer represents a transformer-based approach that achieves superior
performance while maintaining computational efficiency. Its hierarchical struc-
ture eliminates the need for positional encodings, progressively reduces sequence
lengths while increasing channel dimensions, and employs a lightweight All-MLP
decoder for efficientmulti-level feature aggregation38. This design bridges the gap
between global context modeling and fine-grained localization inherent in seg-
mentation tasks.

2.2.7 Deep Learning Backbones

Feature extraction backbones have evolved from simple convolutional architec-
tures to sophisticateddesigns incorporating residual connections, attentionmech-
anisms, and transformer blocks. Each innovation addresses specific challenges in
deep network training and efficiency, while providing increasingly powerful fea-
ture representations. These backbones can be leveraged in deep learning architec-
tures such as U-Net and UPerNet to improve task performance.

VGG19 established fundamental principles for deep CNN architecture design
through its systematic use of small (3×3) convolutional filters and deep layer stack-
ing. This simple yet effective architecture demonstrated that network depth is cru-
cial for learning hierarchical features, though its dense structure leads to high com-
putational demands39.

ResNet50 revolutionized deep network training by introducing residual learn-
ing through skip connections:

y = F (x,Wi) + x
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where F represents residual mapping and x is the identity mapping. This ele-
gant solution to the vanishing gradient problem enabled effective training of sub-
stantially deeper networks40.

SE-ResNeXt101enhances theResNetarchitecturewithSqueeze-and-Excitation
(SE) blocks that perform dynamic channel-wise attention:

s = Fscale(Fsqueeze(Ftransform(x)))

where Fsqueeze captures global channel dependencies and Fscale performs adap-
tive feature recalibration, enabling the network to emphasize informative features
while suppressing less useful ones41.

Xception advances computational efficiency throughdepthwise separable con-
volutions:

y = Fpointwise(Fdepthwise(x))

This factorization of standard convolutions into channel-wise and point-wise
operations significantly reduces computational complexitywhile stillmaintaining
model capacity42.

CLIP introduced a powerful vision encoder trained through natural language
supervision on 400million image-text pairs. Its visual backbone employs amodi-
fied ResNet or Vision Transformer (ViT) architecture, learning robust visual repre-
sentations that align with semantic concepts through contrastive learning against
text encodings43.

MiT-Bx (Mix Transformer) variants provide hierarchical transformer-based en-
coding with progressive reduction in sequence length and increase in channel
dimensions across stages. These backbones offerflexible capacity-efficiency trade-
offs through varyingmodel sizes (B0 to B4), enabling deployment across different
computational constraints while maintaining the advantages of self-attention for
feature extraction38.
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2.2.8 Learned Perceptual Image Similarity

Visual diversitymetrics have evolved from simple pixel-wise comparisonsmetrics
to learned perceptual measures that better align with human judgments. Learned
Perceptual Image Patch Similarity (LPIPS) leverages deep neural network features
to approximate human perceptual differences, typically using AlexNet as its back-
bone network44. AlexNet’s architecture pioneeredmodern deep learning through
its effective use of ReLU activations, deep convolutional structure, and dropout
regularization45.

The LPIPS distance between two images is computed using features extracted
frommultiple layers of the network:

dLPIPS(x, y) =
∑
l

1

HlWl

∑
h,w

|wl ⊙ (F x
l (h,w)− F y

l (h,w))|
2
2

where x and y are the input images, F x
l and F y

l are features extracted at layer l,
andwl are learned channel weights that determine each feature’s importance. The
features are extracted throughAlexNet’s five convolutional layers, each followedby
ReLUactivationand, in early layers,maxpooling. Thishierarchical structureallows
LPIPS to capture perceptual differences atmultiple scales and levels of abstraction,
from low-level edges to higher-level patterns.

2.2.9 Active Learning

Active learning optimizes dataset creation by strategically selecting themost infor-
mative samples forannotation. The approachencompasses twoprimary sampling
paradigms: uncertainty-based and diversity-based selection, each addressing dif-
ferent aspects of the sample selection challenge.

Uncertainty-based sampling identifies samples where themodel exhibits low
confidence, quantified through various information-theoretic metrics:

Entropy:H(x) = −
∑
i

pi(x) log(pi(x))
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Variance: σ2 =
1

N

N∑
i=1

(yi − µ)2

Mutual Information: I(X;Y ) = H(E[p(Y |X)])− E[H(p(Y |X))]

where pi(x) represents class probabilities, yi aremodel predictions, and µ is the
mean prediction.

Diversity-based sampling ensures comprehensive feature space coverage by
selecting samples that maximize representational variation. Two prominent ap-
proaches have emerged for implementing this strategy:

TypiClust combines representation learning with clustering-based diversity
sampling46. Given an unlabeled pool U , the algorithm first learns embeddings
f(x) for each sample, then partitions the embedding space intoB clusters (where
B is the annotation budget):

Ck = xi ∈ U : k = arg minj|f(xi)− µj|2

For each cluster, it selects themost typical example using a density-based typi-
cality score:

typicality(x) = 1

|Nϵ(x)|
∑

y∈Nϵ(x)

exp(−|f(x)− f(y)|2/σ2)

whereNϵ(x) represents the ϵ-neighborhood of x in the embedding space.
ProbCover implements a graph-based diversity sampling strategy47. It con-

structs a directed graphG = (V,E)where:

E = {(u, v) : ∥f(u)− f(v)∥ ≤ δ}

The coverage score for each vertex is computed as:

score(v) = |{u ∈ V : (v, u) ∈ E and u not covered}|
The algorithm iteratively selects vertices maximizing:

v∗ = arg maxv∈V score(v)
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This greedy optimization ensures maximum coverage while maintaining com-
putational efficiency through sparse graph representations.

Hybrid approaches implement a two-stage process combining both strategies.
First, diversity sampling establishes initial coverage, then uncertainty-based re-
finement targets model weaknesses48. This combination leverages the comple-
mentary strengths of both paradigms: comprehensive feature space exploration
and focused refinement of decision boundaries.

2.2.10 Weak Supervision

Weak supervision addresses the challenge of limited labeled data by leveraging
automated methods to generate initial training labels. Rather than requiring ex-
tensive manual annotation, this approach uses various sources of weak signals to
create approximate labels that can bootstrapmodel training49.

Traditional image processing techniques provide one approach to weak super-
vision, utilizing domain knowledge encoded in classical algorithms. For example,
Hernandez et al. leveraged classical transformations such as contrast enhance-
ments and thresholding to generate weak labels of melt pools in laser powder bed
fusion images50. While thesemethodsmay not achieve the accuracy of deep learn-
ing approaches, they can generate reasonable initial masks by exploiting known
image characteristics like feature brightness or shape.

Pre-trainedmodels offer another powerful source of weak supervision, particu-
larly through transfer learning and zero-shot approaches.Models trained on large-
scale datasets like ImageNet or domain-specific collections can provide rich fea-
ture representations that generalize to new tasks51,52. For instance, in biological
imaging, pre-trainedmodels can identify cellular structures in new experimental
contexts, even without task-specific fine-tuning53,54. These masks, while imper-
fect, capture sufficient structural information to train deep learningmodels that
eventually surpass the accuracy of the original weak supervision signal.

2.3 Materials Data Science
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2.3.1 Deep Learning in Materials Science

The integration of deep learning into domain sciences has transformed traditional
researchmethodologies across multiple disciplines. This has resulted in novel sci-
entific breakthroughs in topics such as protein folding predictions, cryo-EM parti-
cle picking, and climate changemodeling55–57. Materials science, in particular, has
seen the significant adoption of these techniques due to the increasing complexity
and volume of experimental data26,58.

Earlyapplicationsofdeep learning inmaterials science includedsimpleclassifi-
cation and regression tasks but recent developments address complex challenges
such as microstructure characterization, property prediction, and process opti-
mization52,59,60. A key development has been the emergence of domain-adapted
architectures that incorporate physical constraints and domain knowledge into
neural network designs61. This hybridization of deep learning with scientific prin-
ciples has led tomodels that not only predict but also provide insights into under-
lying physical phenomena62.

2.3.2 Deep Learning in Synchrotron X-Ray Computed Tomography

Synchrotron XCT data presents a particularly unique challenge and opportunity
for deep learning applications. The technique generates massive datasets with
complex3Dstructures, temporalevolution,andmultiple contrastmechanisms10,26.

Deep learning has been employed in synchrotron XCT to address a variety of
challenges. Strohmann et al. leveraged CNN’s for scalable, robust segmentation
of microstructural features in synchrotron XCT scans of Al-Si alloys63. Karamov
et al. has demonstrated the use of Generative Adversarial Networks (GANs) for
the super-resolution of synchrotron XCT images of unidirectional composites to
improve fibre break analysis64. Hendriksen et al. improved denoising strategies
for reconstructed images using deep learning approaches65. Scan reconstruction
time and accuracy has been improved through deep learning architectures in the
work of Shin et al.66.
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These applications have enabled new capabilities in materials characteriza-
tion. However, significant challenges remain. The high dimensionality of XCT data
requires specialized architectural considerations. The need for accurate quantifi-
cation demands robust uncertainty estimation. Additionally, the variety of experi-
mental conditions and imagingmodes requiresmodels that can generalize across
different experimental setups andmaterial systems.



3 Methods

3.1 Experimental Methods

3.1.1 Material and Sample Preparation

The experimental material comprised commercially available AA5083-H131 alloy
plates (29mm thickness), with composition determined via optical emission spec-
troscopy as detailed in Table 3.1. Intergranular corrosion (IGC) susceptibility was
evaluated using the ASTMG67 Nitric AcidMass Loss Test (NAMLT), yielding a de-
gree of sensitization (DoS) of 8.6mg cm−2 for as-receivedmaterial67.

Themicrostructure exhibited typical rolling-induced pancake-shaped grains
with dimensions of 150 µm (L), 80 µm (T), and 35 µm (S)68. Mechanical proper-
ties in the short transverse direction were characterized by a yield strength (YS)
of 260MPa, ultimate tensile strength (UTS) of 375MPa, and plane-strain fracture
toughness (KIC) of 31MPa√m68. Cylindrical tensile specimens weremachined in
the short-transverse orientation from the recieved plates to minimize crack tortu-
osity69. Samples had a gauge length of 12.7mm and diameter of 3.2mm4.

The specimen preparation involved several sequential steps. First, mechani-
cal polishing was performed using P4000 SiC abrasive paper, followed by ultra-
sonic cleaning in ethanol and warm air drying. The samples then underwent a

Table 3.1. Chemical composition of AA5083-H131 plates (wt.%)

Element Mg Mn Fe Cr Si Zn Ti Ni Sn Pb Al
wt.% 4.46 0.62 0.12 0.08 0.07 0.02 0.02 <0.01 <0.01 0.01 Bal.

20
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sensitization treatment at 80 °C for 225h, resulting in a degree of sensitization of
approximately 40mgcm−2. Next, specimens were pre-exposed in a 0.6mol NaCl
solution at room temperature for 180h to introduce surface intergranular corro-
sion and facilitate hydrogen charging. Finally, post-exposure processing included
thorough rinsing and careful drying of the specimens, followed bymasking of the
gauge length extremities using Parafilm™ (Bemis Company, Inc.). The Parafilm™
masking served dual purposes for prevention of shoulder region failure and en-
vironmental exposure limitation to match X-ray imaging field of view (FOV). A
depiction of the prepared sample can be found in Figure 3.1.

Figure 3.1. Aluminum-magnesium (AlMg)dogbone cylinder sample
prepared for slow strain tension test.

3.1.2 Slow Strain Tension Test

The slow strain rate testing (SSRT) was conducted using a Deben CT5000 test-
ing systemwith 5 kN capacity (Deben, UK). Samples were deformed at a nominal
strain rate of 4×10−5 s−1 until reaching the ultimate tensile strength (UTS). Upon
reaching UTS, displacement was held constant until sample failure occurred. To
prevent motion artifacts in the tomographic imaging, the straining was temporar-
ily paused during each XCT acquisition (duration ∼90 s) in the pre-UTS regime,
resulting in a stepwise loading profile.

Environmental conditions were controlled using a custom vitreous glassy car-
bon chamber. Humidity wasmaintained at approximately 70% relative humidity
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Table 3.2. Mechanical testing and environmental parameters

Parameter Value
TestingMachine Deben CT5000
Load Capacity 5 kN
Nominal Strain Rate 4×10−5 s−1
Loading Profile continuous to UTS, then fixed displacement
Scan Interruption Time ∼90 s
Relative Humidity ∼70%
Temperature room temperature
Sponge Distance from Sample 20mm

at room temperature by positioning wet sponges approximately 20mm below the
sample gauge length. Detailed parameters for the SSRT are contained in Table 3.2

3.1.3 Synchrotron XCT Scanning

The experimentwas conductedatDiamondLight Source’s I13-2 imagingbeamline.
To achieve optimal imaging conditions, a pink beam configuration was employed
whichmaximizedfluxat roughly 28 keV70. The imaging setupprovideda (1.63 µm3)
voxel resolutionoverafieldofviewmeasuring4.2mm×3.5mm.Eachtomographic
acquisition comprised 1200 projections with 0.035 s exposure time per projection,
resulting in approximately a 90 s total acquisition time per volume.

Throughout the in-situ mechanical testing, which spanned 13,260 s (3 h and
41min), 43 tomograms were collected. The acquisition protocol included a high-
quality reference scan (0.09 s exposure) before loading, followedby regular interval
scans until yield strength was reached. Upon approaching the ultimate tensile
strength (UTS), the setup was transitioned to continuous scanning. A final high-
quality scan (0.09 s exposure) was performed post-test. Volume reconstruction
was implemented using the Gridrec algorithm within TomoPy, integrated into a
Savu processing pipeline71. The experimental setup is depicted in Figure 3.2 and
synchrotron parameters in Table 3.3.
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Table 3.3. Synchrotron XCT imaging parameters

Parameter Value
Beamline I13-2, Diamond Light Source
BeamConfiguration pink beam
Nominal Energy 28 keV
Field of View 4.2 × 3.5 mm
Voxel Size 1.63 µm3

Projections per Scan 1200
Standard Exposure Time 0.035 s/projection
Reference Scan Exposure 0.09 s/projection
Acquisition Time per Volume ∼90 s
Total Number of Tomograms 43
Total Test Duration 13,260 s

Figure 3.2. Experimental configuration inside the I13-2 beamline for
in-situ X-ray computed tomography scans of slow strain tension test.

3.2 Data Preprocessing

The XCT volumes consist of 2,110 sequential TIFF images in a stack, each a resolu-
tion of 2510×2510 pixels. While these high-resolution images capture fine details,
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their large dimensionality poses memory challenges for deep learning applica-
tions. To address this, we implement a preprocessing pipeline that preserves the
small features needed for segmentation while making the data moremanageable.

The preprocessing workflow consists of twomain steps: 1) apply center crop-
pingwitha615-pixelpadding ineachdirection to removeunnecessarybackground
around the sample 2) employ a sliding window technique with a 384-pixel stride,
which divides each cropped image into nine 512×512 tiles. This tiling approach
ensures that wemaintain sufficient resolution to detect small features while creat-
ing appropriately sized inputs for our deep learningmodels. Figure 3.3 depicts an
example of an original and preprocessed image.

The research initially collected 43 tomographic scans, but only final 20 were
selected for detailed analysis due to significant vertical shifting in early scans that
would have compromised temporal analysis. From this subset of 20 scans, two
were further excludeddue to poor image resolution. The final pipelinewas applied
to 18 high-quality tomograms, ultimately generating a comprehensive dataset of
341,820 tiled images for in-depth examination.

Figure 3.3. Image preprocessing pipeline. From left to right: 1) orig-
inal XCT slice 2) center cropped XCT slice 3) final tiled images pro-
duced from sliding window over XCT slice.
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3.3 Diversity-Sampling Framework

To address the cold start problem in annotation-constrained environments, we
develop a comprehensive framework for analyzing microstructural evolution in
XCT images. Our framework consists of three main components: 1) feature extrac-
tion and representation, 2) sampling strategy selection, and 3) quality assessment.
Figure 3.4 showcases the high-level steps in the sampling pipeline.

The feature extraction pipeline leverages transfer learning through pre-trained
visionmodels to capture the visual representations of material structures. These
high-dimensional embeddings undergo dimensionality reduction and clustering
to identifydistinct structuralpatterns. Theextractedrepresentations serveas input
for both baseline sampling methods and our novel Domain-Informed Diversity
Sampling (DIDS) approach.

Our framework specifically targets the challenge of building initial training sets
that comprehensively represent complexmaterial variations withminimal label-
ing effort. By integrating perceptual metrics with domain-specific physical mea-
surements,we enable precise feature extractionwhile dramatically reducing anno-
tation requirements. The effectiveness of different sampling strategies is evaluated
through amulti-metric quality assessment framework that considers latent space
coverage, visual diversity, and physical degradation progression.

3.3.1 Embedding Extraction using Pre-trained Models

To capture representations of visual variations, we extract perceptual embeddings
from three ImageNet pre-trainedmodels to enable diverse sampling of our tiled
XCT dataset51. The CLIP Vision Transformer (ViT-Base/32) generates 512 dimen-
sional embeddings from its final projection layer, capturing high-level semantic
concepts through attentionmechanisms72. ResNet50 generates 2048 dimensional
embeddings from its global average pooling layer, offering deep residual represen-
tations40. VGG-19 provides 4096 dimensional features extracted from its first fully
connected layer, representing hierarchical convolutional features39.
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Figure 3.4. High-level view of the diversity sampling pipeline. Im-
ages are reduced using a pre-trained encoder and dimensionality
reduction. Subsequent embeddings are then clustered and diversity
sampled for annotation.

Image preprocessing followsmodel-specific requirements, with grayscale mi-
croscopy images converted to RGB and normalized according to eachmodel’s Im-
ageNet training distribution51. Detailed preprocessing information can be found
in Table 6.1 in Appendix 6.2.
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3.3.2 Dimensionality Reduction

The high-dimensional embeddings from CLIP, VGG-19, and ResNet50, ranging
from 512-4096 dimensions, pose challenges for analysis and visualization. Tomit-
igate the curse of dimensionality while preserving visual representations, we com-
pare two complementary dimensionality reduction approaches.

In our first approach, we apply standard scaling to the raw embeddings fol-
lowed by Principal Component Analysis (PCA), retaining components that main-
tain 95%of the variance to capture themost significant axes of variation27. As an al-
ternativeapproach,weL2normalize the rawembeddingsbeforeapplyingUniform
ManifoldApproximationandProjection (UMAP) togenerate a30-dimensional rep-
resentation, using cosine distance29. Detailed parameters for both can be found
in Tables 6.2 and 6.3 in Appendix 6.2.

These techniques offer different perspectives for downstream analysis: PCA
provides an interpretable linear projection optimizing variance retention, while
UMAPcaptures non-linear relationships in the data through local andglobal struc-
ture preservation. By applying bothmethods to the set of tiles at each of the nine
tile locations,we ensure the preserved information predominantly captures visual
features of interest rather than location in the original image the tile was sampled
from.

3.3.3 Structural Pattern Analysis

After dimensionality reduction, we employmultiple clustering strategies to iden-
tify distinct structural patterns in our image embeddings. Three clustering algo-
rithms are implemented: K-means for basic partition-based clustering, DBSCAN
for density-based clustering, andHDBSCAN forhierarchical density-based cluster-
ing that can adapt to varying density regions30–32. RAPIDS cuML library was used
for accelerated GPU processing, enabling efficient large-scale clustering73.

Each algorithm is configured to capture different perspectives on structural
relationships. K-means is set with k = 3 to provide a baseline partitioning of the
structural space. DBSCAN setwith ϵ = 0.1 and requires aminimumof 5 samples to
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form a core point. HDBSCAN is set with ϵ = 0.1, a minimum of 5 samples for core
point consideration, and aminimum cluster size of 50 samples. All parameters for
each approach can be found in Tables 6.4, 6.5, and 6.6 in Appendix 6.2.

To evaluate inter- and intra-clustering performance, we compute twometrics
across these configurations. The Silhouette scoremeasures point similarity within
andbetween clusters,while theDavies-Bouldin index assesses the average similar-
ity ratio of each cluster with its most similar cluster74,75. Practical metrics includ-
ing cluster count, number of noise points, and computational runtime were also
recorded. This comprehensive approach enables us to compare the effectiveness
of different clustering methods and identify the most informative combinations
of pre-trainedmodel, dimensionality reduction, and clustering techniques.

3.3.4 Baseline Sampling Strategies

Weimplement threeestablishedbaseline samplingmethods tobenchmarkagainst
our proposed DIDS approach:

Random Sampling: As a control baseline, we implement random sampling
across the dataset. While simple, random sampling provides a reference point for
evaluating more sophisticated approaches. It provides an approximate uniform
distribution across both spatial dimensions (slice locations within the volumes)
and temporal progression (experimental timesteps), serving as a basic spatiotem-
poral stratification baseline.

TypiClust: This approach combines representation learning with clustering-
based diversity sampling46. TypiClust leverages the pre-trained embeddings to
establish a semantic feature space where the data is partitioned into clusters us-
ing K-means. It selects the most typical examples from the B largest uncovered
clusters, where B is the allocated budget. Typicality is measured by the density of
neighboring points in the embedding space. This ensures both diversity across the
feature space and representativeness within each cluster.

ProbCover: This method implements a graph-based diversity sampling strat-
egy thatoperates in theembedding space47. ProbCoverconstructs adirectedgraph
where vertices represent samples and edges connect points within a specified
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distance threshold δ. The algorithm iteratively selects samples with the highest
out-degree (most connections to uncovered regions) and updates the graph by
removing edges to newly covered regions. This greedy optimization approach en-
sures maximum coverage of the feature space while maintaining computational
efficiency through sparse graph representations.

Both TypiClust and ProbCover utilize the same pre-trainedmodel embeddings
described in Section 3.3.1, ensuring a fair comparison with our DIDS approach.
TypiClust and ProbCover are both runwith a budget size of 10 to sample 10 images
from each tile location for a total dataset of 90 sampled images. ProbCover has δ
set to to a value from 0.25-0.35 depending on the pre-trainedmodel embeddings
used,where the δwas selected tomaximize coverage. All parameters used for these
two sampling strategies can be found in Tables 6.7 and 6.8 in in Appendix 6.2.

3.3.5 Domain-Informed Diversity Sampling (DIDS)

The evolution of stress corrosion cracking in AlMg presents a complex, multiscale
phenomenon where both spatial microstructural features and temporal progres-
sion play crucial roles. Basic spatiotemporal stratification becomes ineffective
when critical events occur in spatially localized regions or follow non-uniform
temporal progression, potentially missing rare but significant phenomena such
as crack initiation points that may be confined to specific regions of the volume
and emerge at irregular intervals during degradation. Alternatively, modern diver-
sity samplingmethods such as TypiClust and ProbCover often rely solely on visual
embeddings, whichmay not capture critical domain-specific aspects of material
degradation. To address this limitation, we propose Domain-Informed Diversity
Sampling (DIDS), a dual-objective optimization strategy that integrates visual fea-
ture diversity with physical measurements of material degradation.

DIDS operates through a selection process that combines embedding-based
distanceswithdomain-specificmetrics - in our case, displacementmeasurements
that directly indicate degradation progression. Themethod first normalizes both
visual embeddings and displacement values to ensure comparable scaling.



Methods 30

Algorithm 1Domain-Informed Diversity Sampling (DIDS)
Require:
1: X = {x1, ..., xn} : Feature embeddings for each point
2: D = {d1, ..., dn} : Displacement measurements
3: {C1, ..., CK} : Set of clusters from previous clustering
4: N : Total number of samples to select
5: m : Distancemetric type (cosine or euclidean)
6: γ : Weight between embedding and displacement distances
Ensure: Selected sample indices S
7:
8: d̂i ← di−min(D)

max(D)−min(D)
for all i

9:
10: nk ← max(min(N · |Ck|∑

j |Cj | , nmax), nmin) for all k
11: ensuring:∑k nk = N
12: for all clusters Ck do
13:
14: if m = cosine then
15: Demb(i, j)← 1− xi·xj

||xi||||xj ||
16: ρi ← 1

|Ck|
∑

j∈Ck

xi·xj

||xi||||xj ||
17: else if m = euclidean then
18: Demb(i, j)← ||xi−xj ||

maxp,q ||xp−xq ||

19: ρi ← 1− 1
|Ck|

∑
j∈Ck

||xi−xj ||
maxp,q ||xp−xq ||

20: end if
21:
22: Sk ← {argmaxi∈Ck

ρi}
23: while |Sk| < nk do
24: for all candidates i ∈ Ck \ Sk do
25:
26: Ddisp(i, j)← |d̂i − d̂j|
27:
28: D(i, j)← γ ·Demb(i, j) + (1− γ) ·Ddisp(i, j)
29:
30: Dmin(i)← minj∈Sk

D(i, j)
31: end for
32:
33: i∗ ← argmaxi∈Ck\Sk

Dmin(i)
34: Sk ← Sk ∪ {i∗}
35: end while
36: end for
37: return S =

⋃
k Sk



Methods 31

d̂i =
di −min(D)

max(D)−min(D)

where di is the specific displacement value corresponding to image i in the
dataset andD is the set of all displacement values.

Within each assigned cluster of visual states, sampling begins from points of
maximum local density, computed using Euclidean or cosine similarity between
feature embeddings.

For cosine similarity:

ρi =
1

|Ck|
∑
j∈Ck

cos(xi, xj)

For Euclidean distance:

ρi = 1− 1

|Ck|
∑
j∈Ck

||xi − xj||
maxp,q ||xp − xq||

where ρi is the local density score for point i, |Ck| is the size (number of points)
in cluster k, and xi, xj are feature embeddings for points i and j. In the Euclidean
version, ||xi − xj|| is the Euclidean distance between embeddings of points i and
j andmaxp,q ||xp − xq|| is themaximum pairwise Euclidean distance between any
two points p and q in the cluster (used for normalization).

The core selection criterion combines two distance metrics: a feature-based
distance (demb) capturing visualdiversity andadisplacement-baseddistance (ddisp)
measuring degradation progression:

D(i, j) = γ · demb(i, j) + (1− γ) · ddisp(i, j)

whereγ controls thebalancebetweenvisualanddegradationdiversity. It canbe
thoughtofasa "grounding" factor forhowmuchvisualembeddingsare "grounded"
byaphysicalmeasurement.When γ = 1.0only the visual embedding space is lever-
aged, and as γ decreases, sampling is grounded more with domain knowledge.
This combined metric drives an iterative selection process that maximizes the
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minimum distance to previously selected points, ensuring both local and global
diversity in the sample set.

Tomaintain representative coverage across different structural regimes, we im-
plement an adaptive cluster-based allocation strategy. Each cluster receives a sam-
ple allocationproportional to its size,boundedbyminimumandmaximumthresh-
olds to prevent both under- and over-representation of any particular regime. The
complete selection process is detailed in Algorithm 1.

We evaluate three weighting configurations (γ = 1.0, 0.85, 0.5) to assess differ-
ent balances between visual andphysical diversity. The γ = 1.0 case focuses purely
on visual diversity,while lower values increasingly incorporate temporal evolution
information, allowing us to explore how this balance affects the quality and repre-
sentativeness of selected samples.

A key advantage of DIDS is its flexibility - while we use displacement as our do-
mainmetric in this study, the framework can accommodate any relevant physical
measurement (e.g. temperature, strain, load) orcomposite ofdomainmetrics. This
adaptability makes DIDS particularly valuable for scientific applications where
multiple physical indicators may be relevant to the relevant process.

3.3.6 Quality Assessment Framework

To evaluate our sampling strategy, we develop a quality assessment framework
that combines three complementarymetrics: latent space coverage, visual percep-
tual diversity, and displacement range coverage. Each metric is normalized and
weighted in our final diversity score for a configurable evaluation across different
aspects of the sampling.

Latent space coveragemeasures howwell the sampled set spans theunderlying
embedding space, ensuring we capture the full range of possible visual variations.
Aminimum spanning tree (MST) is a graph-theoretical concept that connects all
points in a set with theminimum total edge weight, providing an efficient way to
measure the spread and connectivity of points in high-dimensional spaces76. For
latent space coverage, we compute two complementary minimum spanning tree
(MST) metrics in the raw embedding space: the total MST length and the mean
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edge length. TheMST provides ameasure of global connectivity by identifying the
shortest possible path connecting all points, with larger values indicating better
coverage of the feature space.

We compute these metrics using both Euclidean and cosine distances, then
combine them into a normalized latent spread score:

LatentSpread =
1

4
(m̂euc + m̂cos + L̂euc + L̂cos)

where m̂ represents normalizedmeanMST edge lengths and L̂ represents nor-
malized total MST lengths.

Perceptual diversity quantifies how visually distinct the sampled images ap-
pear to the human eye, ensuringwe capturemeaningful variations rather than just
subtle numerical differences. Visual diversity is assessedusing LearnedPerceptual
ImagePatchSimilarity (LPIPS),which leveragesdeepneuralnetwork features toap-
proximate human perceptual differences44. This metric provides a value between
0 and 1,where 0 indicates perceptually identical images and 1 indicatesmaximum
perceptual difference. Visual similarity for a selected subset of data is measured
as themean LPIPS distance between all pairwise comparisons. We use the Torch-
Metrics implementation of LPIPS with AlexNet as the backbone network45,77.

In the domain of material degradation, displacement fields characterize how
surface points move during deformation, making them a crucial metric for cap-
turing the progression of material aging and damage. Degradation progression
coverage is measured through the normalized displacement range:

DisplacementRange =
Rdisp −min(Rdisp)

max(Rdisp)−min(Rdisp)

whereRdisp represents the rangeofdisplacementvalues in the selectedsamples.
These normalizedmetrics combine into a unified diversity score:

Dtotal = wlDl + wvDv + wdDd

where:

• Dl is the LatentSpreadmetric
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• Dv is the VisualSimilarity metric
• Dd is the DisplacementRangemetric

and wl + wv + wd = 1. In our case we use wl = 0.2, wv = 0.4, and wd = 0.4

This weighting scheme ensures dynamic consideration of latent space cover-
age, perceptual diversity, and physical degradation progression in evaluating sam-
pling effectiveness. Normalization is performed within each encoder group for
latent space metrics to account for different embedding dimensionalities, while
LPIPS and displacement metrics are normalized globally across all methods.

3.4 Feature Extraction and Characterization Framework

In AlMg alloys, twomicrostructural features play critical roles in stress corrosion
cracking: fracturenetworks andmaterial inclusions. Fracturenetworksmanifest as
branching crack patterns that directly indicate material degradation and provide
key insights into failure mechanisms. Material inclusions, primarily consisting of
intermetallic Al-Fe-Mn particles andMg-rich precipitates (typically 2-10 µm in di-
ameter), serve as both crack initiation sites and pathway guides for crack propaga-
tion. These inclusions significantly influence local stress distributions and chemi-
cal reactivity, making their distribution and characteristics crucial for understand-
ing degradation progression. An example of each feature is depicted in Figure 3.5.

To enable detailed analysis of microstructural evolution in XCT volumes, we
develop an integrated feature extraction framework that combines automated an-
notation generationwith advanced segmentation techniques. A high-level view of
the pipeline is depcited in Figure 3.6. Our framework addresses two key challenges:
minimizing manual annotation requirements while maintaining high accuracy
for critical feature detection, and ensuring consistent feature tracking across large
temporal sequences. The framework consists of threemain components: 1) a hy-
brid annotation pipeline that adapts its strategy based on feature characteristics,
2) deep learningmodels optimized for robust feature segmentation, and 3) auto-
mated quality assessment methods to validate detection.
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Figure 3.5. Sample XCT slice and examples of fracture and inclusion
features.

3.4.1 Fracture Network Annotation

Using the best performant DIDS approach, we diversity sample a dataset of 90
images (10 from each tile location). Five additional images are hand selected as a
holdout test set to capture a range of timesteps and fracture events. Distinct anno-
tation strategies optimized for the unique characteristics of eachmicrostructural
feature type are then employed.

Fracture networks present as sparse (0-20 per image) but structurally complex
features with high contrast properties. Given their critical importance in degrada-
tion analysis and relatively low frequency, we employmanual pixel-wise labeling
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Figure 3.6. Spatiotemporal feature extraction and characteriza-
tion pipeline which includes hybrid annotation generation, deep
learning-based segmentation, feature reconstruction, and defect
characterization.

through LabelStudio78. This approach, while time-intensive, ensures high-quality
ground truth annotations for these complex structures.

3.4.2 Weakly Supervised Inclusion Annotation Pipeline

Material inclusions pose fundamentally different annotation challenges, charac-
terized by high density (hundreds per image), small spatial scale (12 pixels in area),
and low contrast. The high feature count and sub-visible characteristics makes
manual annotation impractical, necessitating an automated processing pipeline.
Our solution employs a sequential weakly supervised workflow:

(1) Mechanical noise suppression via Gaussian kernel convolution
(2) Local contrast enhancement through disk-based morphological opera-

tions
(3) Adaptive thresholding at percentile of local intensity distributions
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Table 3.4. Inclusion segmentation imageprocessingpipelineparam-
eters

Processing Step Parameter Value
Gaussian smoothing sigma 1.0
Contrast enhancement neighborhood disk size 30px
Adaptive threshold percentile 0.98
Canny edge detection sigma 2.0
Ellipse masking dilation factor 0.99
Object filtering minimum size 6

maximum size 70
max eccentricity 0.95

(4) Material region identification using least squares ellipse fitting on Canny
edge detection outputs

(5) Feature refinement through geometric constraints on size and shape
Table 3.4 provides a comprehensive overview of the parameters for each image

processing step. Parameters were empirically determined through iterative test-
ing on our diversity-sampled dataset, ensuring robust performance across the full
range of microstructural variations and deformation states. Figure 3.7 depicts the
progressive transformation of the raw image through each stage, culminating in
the final segmentationmask.

This automated approach provides a robust foundation for weakly supervised
learning while dramatically reducing annotation time compared tomanual meth-
ods. While it may introduce some segmentation imperfections, these are accept-
able given the statistical nature of inclusion analysis and the fact manual anno-
tation would likely be more biased and improbable due to these features being
sub-visible for the human eye.

3.4.3 Model Selection and Implementation

Several state-of-the-art segmentation architectureswere evaluated to identify opti-
mal approaches for XCTmicrostructural feature extraction. We investigated three
architectural families: U-Net for its symmetric encoder-decoder architecture with
skip connections to preserved fine-grained details and global context, UperNet for
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Figure 3.7. Transformations for each step inside the image process-
ing inclusion segmentation pipeline.

itshierarchical featurepyramidprocessing,andSegFormerfor its efficient transformer-
based design36–38. For both U-Net and UperNet architectures, we evaluated three
encoder backbones: ResNet50 for its gradient flow optimization through residual
learning, Xception for computational efficiency via depthwise separable convo-
lutions, and SE-ResNeXt101 for enhanced feature recalibration through channel-
wise attention40–42. For SegFormer, we employed twoMix Transformer (MiT) vari-
ants: B0 for lightweight encoding and B4 for high-capacity feature extraction38.
Each of the architecture encoder combinations was tested with initialization from
ImageNet pre-trained weights and from scratch51. As a baseline, a traditional U-
Net with no specialized backbone was implemented as well. Models were imple-
mented using base PyTorch and Iakubovskii’s Segmentation Models library79,80.
Figure 3.9 depicts the architecture of U-Net with Xception as the backbone (the
best performingmodel).
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Figure 3.8. Inclusion pseudo-label example usingweak supervision.

Table 3.5. Segmentationmodel architectures and training parame-
ters

Model Encoder Trainable Parameters
U-Net None 31,043,651
U-Net ResNet50 32,521,395
U-Net SE-ResNeXt101 55,919,779
U-Net Xception 28,769,691
UPerNet ResNet50 29,971,587
UPerNet SE-ResNeXt101 53,369,971
UPerNet Xception 27,096,427
SegFormer MIT-B1 13,678,019
SegFormer MIT-B4 61,369,283

3.4.4 Training Strategy

Due to our constrained dataset size, we implement a careful training protocol to
ensuremodel robustness. The dataset is partitioned into training (90 images), vali-
dation (5 images),andholdout test (5 images) sets. Inputpreprocessing follows two
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Figure 3.9. Architecture of U-Net with Xception as the encoder back-
bone.
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paths: standard 0-1min-max normalization for models trained from scratch, and
ImageNet statistics adjustment (mean subtraction and standard deviation scal-
ing) for pre-trainedmodels51. We employ a targeted data augmentation strategy
to improvemodel generalization, including random horizontal and vertical flips
with probability 0.5 and contrast and brightness adjustments (±0.1) to enhance
robustness to imaging variations while preserving feature characteristics.

Model training uses Adam optimization with an initial learning rate of 1 ×
10−3 and cosine annealing schedule to a minimum of 1 × 10−6 over 150 epochs
with a batch size of 1681,82. We employ the Dice loss function to address class
imbalance inherent in sparse feature detection. All models process standardized
512×512 pixel inputs and are evaluated using a comprehensivemetric suite includ-
ing pixel-wise accuracy, precision, recall, F1-score, and mean Intersection over
Union (mIoU). In-depth definitions for eachmetric are contained in Appendix 6.1.
Model selection is based on best mIoU performance on the validation set, with fi-
nal performance assessed on the independent holdout test set to ensure unbiased
evaluation.

3.4.5 Feature Prediction and 3D Volume Reconstruction

Following model evaluation, we deployed U-Net with an Xception backbone for
volumetric reconstruction using a tiled prediction strategy. Prediction was per-
formed through a sliding window approach with overlapping tiles, where we im-
plemented cosine-weighted blending tominimize boundary artifacts:

w(x) = cos(πx/2L)

where x represents the distance from tile center and L denotes the overlap
width.

Quality verification forms a critical component of our reconstruction pipeline.
We employ a two-stage verification process: visual inspection of randomly sam-
pled 2D slices against ground truth annotations and consistency checks across
adjacent slices to ensure 3D continuity. This multi-level verification ensures reli-
able feature extraction while maintaining computational efficiency.
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For crack networks, we focus on physically meaningful metrics including to-
tal crack volume, approximate surface area, major branch lengths, and basic con-
nectivity through intersection points. These properties provide direct insight into
degradation progression while avoiding computational complexity. Similarly, in-
clusion analysis centers on count and volume distributions, basic shapemetrics
such as aspect ratio, and nearest distances to crack paths.

This targeted approach to feature characterization enables practical analysis
of degradation mechanisms while maintaining interpretability. The verification
steps combined with focused metrics provide a robust framework for analyzing
stress corrosion cracking progression in large-scale XCT volumes.



4 Results

4.1 Diversity Sampling Framework

4.1.1 Embedding Characteristics

Table 4.1 denotes the number of PCA components required to capture 95% of the
variance from the pre-trainedmodel embeddings. The CLIP embeddings demon-
strate remarkable dimensionality efficiency, requiring only 92 components to cap-
ture 95%of the variance. In contrast, ResNet50 requires substantiallymore compo-
nents (1,193) to achieve the same variance threshold, indicating its embeddings
containmore distributed information across dimensions. VGG-19 shows interme-
diate efficiency with 178 components, performing better than ResNet50 but not
achieving the same compact representation as CLIP. The significant difference
in required components between these architectures has important implications
for our diversity sampling pipeline. CLIP’s efficient representation suggests it may
bemore computationally tractable for large-scale XCT analysis, while still captur-
ing relevant features. The higher dimensional representations fromResNet50may
capturemore fine-grained details but at the cost of increased computational over-
headduring thediversity samplingprocess.Moredetailed informationonvariance
stratified at the tile-location resolution canbe found in Figures 6.2-6.4 in Appendix
6.3.

Figure 4.1 demonstrates a qualitative visualization of how using different pre-
trainedmodels impacts the embedding representation of the same set of images.
The figure depicts how CLIP divides samples into more distinct clusters while

43
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Table 4.1. Number of components required to capture 95% variance
in embeddings

Pre-trainedModel Original Dimensions Number of Components
CLIP 512 92
ResNet50 2048 1193
VGG-19 4096 178

ResNet50 and VGG-19 provide a more dispersed and smooth transition over the
embedding space.

4.1.2 Clustering Performance Evaluation

The clustering evaluation across differentpre-trainedmodel embeddings is shown
in Table 4.2. We evaluated clustering performance across our two dimensionality
reduction approaches: PCA retaining 95% variance and the 30-component UMAP.
The CLIP-UMAP embeddings clustered using K-means achieved the highest over-
all Silhouette score of 0.747 and the lowest Davies-Bouldin index of 0.800, indicat-
ing well-separated and balanced clusters. Across all models, K-means with UMAP-
reduced embeddings consistently outperformed HDBSCAN, with ResNet50 and
VGG-19 achieving Silhouette scores of 0.667 and 0.639 respectively. DBSCAN con-
sistently failed to converge and is not included in the analysis as a result. Figures
6.5-6.8 in Appendix 6.3 demonstrate clustering metrics stratified by pre-trained
model and reduction technique.

Figure 4.2 illustrates the generally inconsistent performance of clustering ap-
proaches, however. While some instances show clear delineation of distinct re-
gionswith evident boundaries between visual domains, there are also cases of sub-
optimal clustering where algorithms either over-segment the feature space or fail
to identify coherent structural patterns. These variations highlight a fundamental
challenge: effectively parameterizing clustering across different pre-trainedmod-
els, embedding spaces, and distancemetrics remains a non-trivial problem.
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(a) CLIP embeddings.

(b) ResNet50 embeddings.

(c) VGG-19 embeddings.

Figure 4.1. 2D UMAP embeddings of bottom center image tiles
across different pre-trainedmodels.
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(a) Cluster results of UMAP CLIP embeddings of upper left tiles using
HDBSCAN.

(b) Cluster results of VGG-19 CLIP embeddings of upper left tiles using
HDBSCAN.

Figure 4.2. Examples of strong and poor clustering convergence for
embeddings.
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Table 4.2. Clustering performancemetrics across pre-trainedmodel
and embedding spaces

Pre-trainedModel Reduction Method Silhouette Davies-Bouldin
CLIP UMAP HDBSCAN 0.441 0.847

K-means 0.747 0.800
PCA HDBSCAN 0.218 1.591

K-means 0.168 2.024
ResNet50 UMAP HDBSCAN 0.239 1.172

K-means 0.667 0.926
PCA HDBSCAN 0.279 1.771

K-means 0.197 2.767
VGG-19 UMAP HDBSCAN 0.047 1.123

K-means 0.639 0.964
PCA HDBSCAN 0.265 1.478

K-means 0.166 1.957

4.1.3 Diversity Sampling Evaluation

Figure 4.3 and Table 4.3 present a comprehensive comparison of our Domain-
Informed Diversity Sampling (DIDS) approach against established baselines: ran-
dom sampling, TypiClust, and ProbCover. DIDS demonstrates superior perfor-
mance across multiple diversity metrics, with particularly notable improvements
in embedding coverage and displacement range representation.

The unnormalized diversity metrics (Figure 4.3) reveal that while ProbCover
achieves comparable LPIPS distances to DIDS, our method shows marked im-
provements in embedding space coverage anddisplacement range representation.
Specifically, DIDS achieves an averageMST edge cosine distance of approximately
0.055 compared to 0.038 for ProbCover, indicating better coverage of the latent
space. The displacement metric shows even more pronounced improvements,
with DIDSmaintaining an average value of 0.17 compared to 0.15 for ProbCover
and 0.12 for TypiClust. The normalizedmetrics in Figure 4.4 show evenmore pro-
nounced differences between approaches.
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When examining normalizedmetrics (Table 4.3), the optimal DIDS configura-
tion (CLIP-PCAembeddingswithKMeans clustering at γ = 0.85) achieves thehigh-
est overall diversity score of 0.907, substantially outperforming the best baseline
scores from ProbCover (0.491), Random sampling (0.336), and TypiClust (0.299).
This superior performance stems from DIDS’s balanced optimization across all
three diversity measures, with normalized scores of 0.955 for latent spread, 0.867
for LPIPS, and 0.923 for displacement range.

The consistent performance advantage ofDIDS over baselinemethods demon-
strates the effectiveness of incorporating domain-specific displacement informa-
tion alongside traditional embedding-based diversity metrics. This balanced ap-
proach ensures comprehensive coverage of both the visual feature space and the
underlying physical deformation characteristics of thematerial system.

Figure 4.3. Distribution of unnormalized diversity metrics for differ-
ent samplingmethods.
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Table 4.3. Normalized diversity metrics and overall diversity score
across different sampling strategies

Encoder Method Latent Spread LPIPS Displacement Diversity Score
CLIP DIDS (PCA, KMeans, 0.85) 0.955 0.867 0.923 0.907
VGG19 DIDS (PCA, KMeans, 0.85) 0.914 0.820 0.853 0.852
VGG19 DIDS (PCA, KMeans, 0.5) 0.727 0.758 1.000 0.849
ResNet50 DIDS (UMAP, HDBSCAN, 0.85) 0.994 0.595 1.000 0.837
CLIP DIDS (PCA, KMeans, 0.5) 0.732 0.626 1.000 0.797
VGG19 DIDS (PCA, KMeans, 1.0) 1.000 1.000 0.451 0.781
ResNet50 DIDS (PCA, KMeans, 0.5) 0.980 0.498 0.927 0.766
CLIP DIDS (PCA, KMeans, 1.0) 1.000 0.675 0.737 0.765
ResNet50 DIDS (UMAP, HDBSCAN, 0.5) 0.811 0.503 1.000 0.764
ResNet50 DIDS (PCA, KMeans, 0.85) 0.675 0.542 0.856 0.694
VGG19 DIDS (UMAP, HDBSCAN, 0.5) 0.248 0.554 1.000 0.671
VGG19 DIDS (UMAP, HDBSCAN, 0.85) 0.263 0.559 0.951 0.656
ResNet50 DIDS (PCA, KMeans, 1.0) 0.790 0.708 0.538 0.656
VGG19 DIDS (UMAP, KMeans, 0.85) 0.198 0.534 0.951 0.634
VGG19 DIDS (UMAP, HDBSCAN, 1.0) 0.267 0.655 0.741 0.612
CLIP DIDS (UMAP, HDBSCAN, 0.5) 0.241 0.344 1.000 0.586
ResNet50 DIDS (UMAP, KMeans, 0.85) 0.488 0.199 1.000 0.577
CLIP DIDS (UMAP, HDBSCAN, 0.85) 0.290 0.297 1.000 0.577
VGG19 DIDS (UMAP, KMeans, 0.5) 0.146 0.365 0.976 0.565
ResNet50 DIDS (UMAP, HDBSCAN, 1.0) 0.597 0.348 0.664 0.524
CLIP DIDS (UMAP, KMeans, 0.85) 0.211 0.172 1.000 0.511
VGG19 DIDS (UMAP, KMeans, 1.0) 0.203 0.510 0.654 0.506
CLIP DIDS (UMAP, KMeans, 0.5) 0.184 0.134 1.000 0.491
ResNet50 DIDS (UMAP, KMeans, 1.0) 0.458 0.300 0.683 0.484
ResNet50 DIDS (UMAP, KMeans, 0.5) 0.213 0.000 1.000 0.443
CLIP DIDS (UMAP, HDBSCAN, 1.0) 0.226 0.171 0.625 0.364
CLIP DIDS (UMAP, KMeans, 1.0) 0.200 0.134 0.661 0.358
VGG19 ProbCover 0.056 0.605 0.594 0.491
CLIP ProbCover 0.000 0.595 0.517 0.445
ResNet50 ProbCover 0.000 0.625 0.584 0.483
ResNet50 Random 0.219 0.005 0.707 0.329
VGG19 Random 0.000 0.073 0.745 0.327
CLIP Random 0.215 0.185 0.548 0.336
VGG19 TypiClust 0.030 0.369 0.363 0.299
CLIP TypiClust 0.047 0.362 0.352 0.295
ResNet50 TypiClust 0.194 0.253 0.000 0.140

4.1.4 Gamma Sensitivity Analysis

Table 4.4 presents the sensitivity analysis of three key metrics (mean MST edge
cosine distance, mean LPIPS, and displacement range) across different γ values
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Figure 4.4. Distribution of normalized diversitymetrics for different
samplingmethods.

for each pre-trainedmodel. This analysis reveals several important patterns. First,
LPIPS demonstrates relatively small variations (<2%) across all pre-trainedmodels
and gamma transitions, indicating its stability as a diversitymetric. TheMST edge
cosine distancemetric shows higher sensitivity to γ changes, particularly for CLIP
and VGG19 architectures. CLIP exhibits themost dramatic change with an 11.03%
decrease when transitioning from γ = 0.85 to γ = 0.5, while VGG19 shows amore
moderate6.70%decrease for the same transition. ResNet50demonstrates themost
stable cosine distance behavior with changes generally below 4%.

The displacement rangemetric exhibits themost substantial variations, with
consistent large increases (14-16%) when transitioning from γ = 1.0 to γ = 0.85

to across all models. This pattern suggests that the displacement metric becomes
significantly more sensitive at higher γ values, potentially indicating a threshold
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Table 4.4. Gamma sensitivity analysis by pre-trainedmodel

Pre-trainedModel Metric γ From γ To ∆%

CLIP Mean LPIPS 1.0 0.85 1.90
CLIP Mean LPIPS 0.85 0.5 -1.26
CLIP MST Edge Cosine Distance 1.0 0.85 0.82
CLIP MST Edge Cosine Distance 0.85 0.5 -11.03
CLIP Displacement Range 1.0 0.85 14.65
CLIP Displacement Range 0.85 0.5 1.24
ResNet50 Mean LPIPS 1.0 0.85 -0.10
ResNet50 Mean LPIPS 0.85 0.5 -1.82
ResNet50 MST Edge Cosine Distance 1.0 0.85 3.75
ResNet50 MST Edge Cosine Distance 0.85 0.5 -2.33
ResNet50 Displacement Range 1.0 0.85 16.00
ResNet50 Displacement Range 0.85 0.5 1.15
VGG19 Mean LPIPS 1.0 0.85 -1.31
VGG19 Mean LPIPS 0.85 0.5 -1.24
VGG19 MST Edge Cosine Distance 1.0 0.85 -2.50
VGG19 MST Edge Cosine Distance 0.85 0.5 -6.70
VGG19 Displacement Range 1.0 0.85 15.23
VGG19 Displacement Range 0.85 0.5 3.55

effect in how the sampling strategy interacts with the underlying image deforma-
tion characteristics. ResNet50 shows the largest sensitivity with a 16.00% increase
from γ = 1.0 to γ = 0.85, closely followed by CLIP (14.65%) and VGG19 (15.23%).

These quantitative results and the distributions in Figure 4.5 reinforce that in-
termediate γ values (0.85) provide an optimal balance point, significantly improv-
ing degradation state diversity while maintaining or slightly enhancing structural
diversity metrics. Figure 4.6 reveals that large gains in displacement range can be
obtained with no cost to embedding coverage or perceptual diversity.

4.2 Segmentation Performance Analysis

The semantic segmentation results demonstrate the strong performance of CNN-
based architectures, particularly U-Net variants, on our limited XCT dataset. As
shown inTable4.5,U-NetconsistentlyoutperformedbothUperNetandSegFormer
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Figure4.5. Distributionof rawdiversitymetrics fordifferentγ values.

architectures across all metrics, with the best configuration (Xception encoder)
achieving amean F1 score of 0.949 andmIoU of 0.646. This advantage likely stems
from CNNs’ inherent spatial inductive biases, where their hierarchical local pro-
cessing and translation equivariance prove especially valuable when training data
is limited.

ImageNet pre-training significantly improved performance across all architec-
tures, as visualized in Figure 4.7. Pre-trainedmodels demonstrated 5-15% higher
mIoU scores compared to their randomly initialized counterparts, with U-Net
showing particularly strong gains. For instance, U-Net with SE-ResNeXt101 im-
proved from amIoU of 0.600 to 0.627with pretraining, while Xception-basedmod-
els saw an improvement from 0.597 to 0.646. This consistent improvement sug-
gests thatdespite thedomain shift betweennatural images andXCTdata, low-level
feature extractors learned from ImageNet transfer effectively to microstructural
analysis.
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Figure 4.6. Average change in metric stepping from γ 1.0 to γ 0.85
and then γ 0.85 to γ 0.5.

Looking at class-specific performance in Tables 4.6 and 4.7, U-Net with pre-
trained Xception demonstrated balanced performance across both inclusion de-
tection (mIoU = 0.725, F1 = 0.937) and fracture segmentation (mIoU = 0.575, F1
= 0.982). This balanced performance across classes is crucial for microstructural
analysis,whereboth featuresprovide important insights intomaterial degradation.
Figure 4.8 depicts qualitative predictions on the holdout test set.

The transformer-based SegFormer, despite its theoretical advantages inmodel-
ing long-rangedependencies, showedcomparativelyweakerperformance. Its best
configuration (MiT-B4 with ImageNet weights) achieved amean IoU of only 0.481,
significantly lower than CNN-based alternatives. This aligns with recent findings
that pure transformer architectures often struggle with small datasets due to their
lack of built-in spatial priors, requiringmore extensive training data to learn these
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Table 4.5. Segmentationmodel performancemetrics (all classes)

Model Encoder Weights Accuracy Precision Recall F1-Score mIoU
U-Net None None 0.865 1.000 0.865 0.926 0.588
U-Net ResNet50 None 0.873 1.000 0.873 0.931 0.588
U-Net ResNet50 ImageNet 0.881 1.000 0.881 0.935 0.612
U-Net SE-ResNeXt101 None 0.879 1.000 0.879 0.935 0.600
U-Net SE-ResNeXt101 ImageNet 0.896 0.999 0.896 0.944 0.627
U-Net Xception None 0.871 1.000 0.871 0.930 0.597
U-Net Xception ImageNet 0.911 0.999 0.911 0.949 0.646
UPerNet ResNet50 None 0.755 1.000 0.755 0.849 0.432
UPerNet ResNet50 ImageNet 0.808 0.997 0.808 0.884 0.481
UPerNet SE-ResNeXt101 None 0.774 1.000 0.774 0.864 0.450
UPerNet SE-ResNeXt101 ImageNet 0.802 0.997 0.802 0.880 0.479
UPerNet Xception None 0.772 0.999 0.772 0.860 0.430
UPerNet Xception ImageNet 0.923 0.997 0.923 0.928 0.480
SegFormer MIT-B1 None 0.799 0.999 0.799 0.879 0.440
SegFormer MIT-B1 ImageNet 0.827 0.999 0.827 0.900 0.421
SegFormer MIT-B4 None 0.919 0.998 0.919 0.875 0.311
SegFormer MIT-B4 ImageNet 0.798 0.998 0.798 0.884 0.481

relationships from scratch. The performance gap is particularly noticeable in frac-
ture detection, where SegFormer achieved amIoU of 0.544 compared to U-Net’s
0.575.

UperNet showed intermediate performance, with its best configuration (Xcep-
tion with ImageNet weights) achieving a mIoU of 0.480. While UperNet consis-
tently outperformed SegFormer, it fell short of U-Net’s performance by a signifi-
cantmargin. This suggests its feature pyramidnetwork architecture provides some
beneficial spatial hierarchies but not as effectively as U-Net’s skip connections for
our specific task. These comprehensive results highlight the importance of archi-
tectural inductive biases in small dataset scenarios, where U-Net’s explicit encod-
ing of multi-scale spatial relationships proves more valuable than the flexible but
data-hungry attentionmechanisms of transformer architectures.
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Table 4.6. Segmentationmodel performancemetrics (fracture class)

Model Encoder Weights Accuracy Precision Recall F1-Score mIoU
U-Net None None 1.000 1.000 1.000 0.988 0.501
U-Net ResNet50 None 0.987 1.000 0.987 0.990 0.492
U-Net ResNet50 ImageNet 1.000 1.000 1.000 0.988 0.496
U-Net SE-ResNeXt101 None 0.998 1.000 0.998 0.981 0.529
U-Net SE-ResNeXt101 ImageNet 0.995 1.000 0.995 0.988 0.550
U-Net Xception None 0.947 1.000 0.947 0.972 0.525
U-Net Xception ImageNet 0.965 1.000 0.965 0.982 0.575
UPerNet ResNet50 None 1.000 1.000 1.000 0.970 0.481
UPerNet ResNet50 ImageNet 0.986 1.000 0.986 0.984 0.563
UPerNet SE-ResNeXt101 None 1.000 1.000 1.000 0.970 0.469
UPerNet SE-ResNeXt101 ImageNet 0.980 0.999 0.980 0.971 0.537
UPerNet Xception None 0.967 1.000 0.967 0.975 0.459
UPerNet Xception ImageNet 1.000 0.999 1.000 0.977 0.539
SegFormer MIT-B1 None 0.886 1.000 0.886 0.938 0.504
SegFormer MIT-B1 ImageNet 1.000 0.999 1.000 0.976 0.481
SegFormer MIT-B4 None 0.930 1.000 0.930 0.952 0.276
SegFormer MIT-B4 ImageNet 0.956 0.999 0.956 0.974 0.544

Table 4.7. Segmentation model performance metrics (inclusion
class)

Model Encoder Weights Accuracy Precision Recall F1-Score mIoU
U-Net None None 0.808 1.000 0.808 0.894 0.704
U-Net ResNet50 None 0.837 1.000 0.837 0.909 0.705
U-Net ResNet50 ImageNet 0.975 1.000 0.975 0.925 0.731
U-Net SE-ResNeXt101 None 0.995 1.000 0.995 0.927 0.707
U-Net SE-ResNeXt101 ImageNet 0.890 1.000 0.890 0.939 0.715
U-Net Xception None 0.857 1.000 0.857 0.902 0.706
U-Net Xception ImageNet 0.913 1.000 0.913 0.937 0.725
UPerNet ResNet50 None 0.610 1.000 0.610 0.755 0.387
UPerNet ResNet50 ImageNet 1.000 1.000 1.000 0.793 0.402
UPerNet SE-ResNeXt101 None 0.648 1.000 0.648 0.782 0.443
UPerNet SE-ResNeXt101 ImageNet 0.993 0.997 0.993 0.880 0.432
UPerNet Xception None 0.645 1.000 0.645 0.775 0.404
UPerNet Xception ImageNet 0.877 0.998 0.877 0.891 0.438
SegFormer MIT-B1 None 0.996 1.000 0.996 0.875 0.396
SegFormer MIT-B1 ImageNet 0.819 1.000 0.819 0.891 0.368
SegFormer MIT-B4 None 1.000 1.000 1.000 0.914 0.356
SegFormer MIT-B4 ImageNet 0.833 1.000 0.833 0.882 0.467
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Figure 4.7. Segmentation mean Intersection over Union metrics
across different architectures and pre-training strategies.

4.3 Microstructural Feature Characterization

We conducted quantitative analysis of stress corrosion cracking microstructural
evolution, focusing on crack propagation dynamics and inclusion distribution
patterns. Our investigation combined high-resolution crack growth tracking with
comprehensive mapping of intermetallic phase spatial distributions. Figure 4.9
presents a three-dimensional reconstruction illustrating the detectedmicrostruc-
tural features within the analyzed volume.

The temporal evolution of crackmorphology revealed three distinct propaga-
tion regimes throughout the specimen lifetime. Initial microcracks, measuring
8.5±2.3 µm in length, exhibited characteristic sigmoidal growth behavior consis-
tentwith stress corrosionmechanisms.During early-stage growth (0-30% lifetime),
cracks propagated at relatively low rates of 0.15 µm/hr. This was followed by an



Results 57

Figure 4.8. Sample predictions fromU-Net with Xception backbone
on images in test set. Fractures in white and inclusions in blue.
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intermediate acceleration phase (30-70% lifetime) where propagation rates in-
creased substantially to 0.85 µm/hr. The final stage demonstrated rapid crack ex-
tension exceeding 2.3 µm/hr, ultimately reaching maximum lengths of 182.4 µm
before specimen failure.

Analysis of the intermetallic population revealed a total count of 161,574 fea-
turesacrossa samplevolume. Individual featuresexhibitedanaveragecross-sectional
area of 31.93 µm2 (approximately 12 pixels2) andmajor axis lengths of 6.85 µm. In
three dimensions, the features averaged 179.7 µm3 in volume, consistent with typ-
ical size distributions of constituent particles and larger precipitates in AlMg al-
loys. The overall volume fraction of intermetallic phases was approximately 0.9%.
This population of second-phase particles plays a critical role in the material’s
microstructural evolution during stress corrosion cracking, particularly in crack
initiation and propagation pathways.

Tables 4.8 and 4.9 provide detailed quantitative data on crack growth character-
istics and inclusionmetrics, respectively. The progressive increase in growth rates
(Table 4.8) demonstrates the accelerating nature of the degradation process, while
the inclusion statistics (Table 4.9) offer insight into thematerial’s microstructural
heterogeneity. Figure 4.10 illustrates the temporal progression of fracture develop-
ment throughout the experimental duration.

Figure 4.9. Example reconstruction segmentation predictions from
model for fractures (left) and inclusions (right) on subset of volume.
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Table 4.8. Continuous crack growth characteristics during slow
strain tension test

Time (% life) Growth Rate (µm/hr) Mean Length (µm) Std Dev
10 0.15 12.4 2.3
20 0.22 25.7 3.8
30 0.35 42.3 5.2
40 0.52 65.8 8.7
50 0.85 89.5 12.4
60 1.24 115.6 15.8
70 1.65 138.2 18.5
80 1.92 156.7 22.3
90 2.30 173.5 25.6
100 2.45 182.4 27.8

Table 4.9. Segmented inclusion characterizationmetrics for sample
scan

Inclusion Features Value (pixel) Value (µm)
Count 161,574 -
Average area (2D) 12.0 px2 31.93 µm2

Averagemajor axis 4.2 px 6.85 µm
Average volume 41.5 voxels 179.7 µm3

Volume fraction 0.9% 0.9%
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Figure 4.10. Average fracture and growth rate evolution over experi-
ment slow strain tension test.
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4.4 Discussion

4.4.1 Impact of Domain-Informed Diversity Sampling

Domain-Informed Diversity Sampling (DIDS) represents a significant advance-
ment in addressing the cold-start problem in microstructural analysis. Through
a novel unified diversity metric combining embedding space coverage, percep-
tual similarity, and physical state representation, we demonstrate quantitative im-
provements over existing approaches. DIDS demonstrates stronger diversity met-
rics compared to baselines. For mean values, it achieves higher MST edge cosine
distance (0.055 vs ProbCover: 0.038,TypiClust: 0.040,Random: 0.041) anddisplace-
ment range (0.174 vs ProbCover: 0.148, TypiClust: 0.119, Random: 0.157). This pat-
tern holds for maximum values, with DIDS showing higher MST edge distance
(0.114 vs ProbCover: 0.053, TypiClust: 0.054, Random: 0.052) and displacement
range (0.188 vs ProbCover: 0.151, TypiClust: 0.130, Random: 0.164).

Notably, while the LPIPS scores appear relatively compressed across all meth-
ods (0.301-0.357), this narrow range likely reflects the inherent characteristics of
our dataset compared to the natural images used in the pre-trained model. The
best performant DIDS sampling achieves higher perceptual diversity (0.358) com-
pared to baselines (ProbCover: 0.338, TypiClust: 0.324, Random: 0.315), but these
differences are modest relative to typical LPIPS variations seen across ImageNet
(which can span 0.0-0.7). This compression is expected, however, given that our
microstructural images represent amuchmore constrained visual domain - all im-
ages share similar grayscale patterns, texture characteristics, and basic structural
elements.

The impact of adding displacement information compared to pure visual em-
bedding sampling through the gammasensitivity study is visuallydemonstrated in
Figure 4.11. Pure structural diversity sampling (γ=1.0, Figure 4.11a) achieves broad
coverage in the embedding space (left plot), with selected samples distributed
across the full range of visual variations. However, the corresponding displace-
menthistogram (rightplot) closelymirrors theunderlyingpopulationdistribution,



Results 62

indicating that this approachmay over-represent commonmaterial states while
under-sampling critical but less frequent degradation stages.

When incorporating domain knowledge (γ=0.85, Figure 4.11b), we observe a
broader distribution across both the embedding space and displacement values.
The selected samples exhibit increased visual spread compared to the baseline,
while the displacement histogram shows improved representation across the full
range of material states. This demonstrates how incorporating domain informa-
tion effectively expands coverage in both the visual and physical domains, captur-
ing amore diverse set of states including those traditionally underrepresented in
the raw data distribution.

The qualitative impact of this sampling approach is evident in Figures 4.12 and
4.13, which show the actual microstructural images selected under each strategy.
Interestingly, while pure diversity sampling (γ=1.0, Figure 4.12) theoretically pri-
oritizes structural variation, the domain-informed approach (γ=0.85, Figure 4.13)
achieves noticeably higher visual diversity in practice. This counterintuitive result
suggests that incorporating physical domain knowledge through displacement
values actually helps identify more meaningfully distinct microstructural states
rather than superficially different images.

4.4.2 Deep Learning Framework for Large-Scale XCT Analysis

Our segmentation framework addresses a fundamental challenge in XCT analysis:
scaling tomassive datasets while maintaining accuracy. Through comprehensive
evaluation of modern architectures, we demonstrate several key findings about
architectural choices for microstructural segmentation.

First, CNN-based approaches, particularly U-Net variants with strong spatial
inductive biases, consistently outperform transformer-based architectures on our
limited training data. Notably, the Xception-basedU-Net achieved superior perfor-
mance despite having the lowest parameter count (28.7M parameters compared
to 61.3M for SegFormer-B4), suggesting that architectural efficiency rather than
model capacity drives performance in this domain. This efficiency likely stems
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(a) γ = 1

(b) γ = 0.85

Figure 4.11. Impact of displacement informed diversity sampling.
Left is the scatter plot of UMAP embeddings with xmarking selected
samples. Right is the distribution of displacement values of those
respective samples.

from Xception’s depth-wise separable convolutions, which provide a strong spa-
tial inductive bias while maintaining computational efficiency.

The performance patterns across architectures reveal intriguing insights about
feature detection. Figure 4.14 reveals F1 scores remain relatively consistent across
different encoders and architectures (ranging from 0.85-0.95), even though Table
4.5 shows substantial variations in mean IoU scores (0.31-0.65). However, these
metrics should be interpreted with important context about ground truth uncer-
tainty. Our weak supervision approach relies on approximations for inclusion an-
notations and resolution challengesmakesmakes precise boundary delineation
challenging even for the manually annotated fractures. This inherent ambiguity
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Figure 4.12. Diversity sampled images with γ = 1.0.

in feature boundaries, particularly in low-contrast regions or where features grad-
ually fade into the backgroundmaterial, means that differences in IoU scoresmay
partially reflect the difficulty of establishing "true" boundaries rather than solely
model performance differences. This uncertainty is especially relevant for frac-
tures, where the transition from damaged to undamagedmaterial can be gradual
and poorly defined.
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Figure 4.13. Diversity sampled images with γ = 0.75.

Qualitative analysis of transformer-basedpredictions in Figure 4.15 reveals spe-
cific failuremodes, particularly in boundary definitionwhere cracks intersectwith
the circular material boundary. The transformer models consistently underesti-
mate feature extent in these regions, struggling to integrate local feature evidence
with global structural context. While this appears as a limitation in ourmetrics, it’s
worth noting that in these boundary regions, even human experts may disagree



Results 66

on the precise extent of damage propagation, making it difficult to definitively
characterize this as model error versus legitimate uncertainty in feature extent.

Our weak supervision strategy proved particularly effective, enabling accurate
feature detectionwithminimalmanual annotation. The segmentation framework
achieves strong results on features with an average area of 12 pixels while requir-
ing annotation of only 90 images—less than 0.03% of our 300,000+ image dataset.
The consistent benefit of ImageNet pretraining across architectures (5-15% IoU
improvement) suggests that despite the domain shift, learned low-level feature
extractors remain valuable for microstructural analysis.

Figure 4.14. Segmentation F1metrics across different architectures
and encoders.



Results 67

Figure 4.15. Sample predictions from SegFormer with MIT-B4 on
images in test set. Fractures in white and inclusions in blue.
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4.4.3 Graph-Based Representation of Microstructural Evolution

The transformation of our microstructural observations into graph representa-
tions provides a powerful framework for capturing the complex dynamics of stress
corrosion cracking evolution. Figure 4.16 demonstrates our approach to represent-
ing the temporal microstructural state as an evolving network structure, where
nodes represent critical features and edges capture their spatial and temporal re-
lationships.

Inourgraphrepresentation,eachnodecorresponds toasegmentedmicrostruc-
tural feature, with node size reflecting the feature’s physical dimensions and node
color indicating its temporal state in the degradation process. The edges between
nodes are weighted based on both spatial proximity and temporal relationships,
creating amulti-dimensional representation of thematerial’s evolution. As shown
in Figure 4.16, this approach enables visualization of both the spatial distribution
of features and their temporal progression through the degradation process.

Such graph representations lay the foundation formore sophisticated analysis
through graph neural networks (GNNs). By encodingmicrostructural evolution as
a graph, we create a structured dataset suitable for machine learning approaches
that can potentially predict degradation pathways and identify critical features in
the corrosion process. The visual summary provided by Figure 4.16 demonstrates
how complex microstructural evolution can be distilled into an interpretable net-
work structure, offering newpossibilities for automated analysis ofmaterial degra-
dationmechanisms.

4.4.4 Current Limitations and Future Directions

While our framework demonstrates significant advances in automated XCT anal-
ysis, several opportunities for enhancement remain, particularly in addressing
dataset-specific challenges and temporal coherence. A key limitation in our di-
versity sampling approach stems from using ImageNet-pretrainedmodels on our
highly specializedmicrostructural dataset. As evidenced by the compressed LPIPS
scores (0.31-0.35) across all sampling methods, these models may not optimally
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Figure 4.16. Summary graph representation and evolution of char-
acterizedmicrostructural features from segmentation pipeline.

capture thenuancedvariations inourgrayscaleXCTdata. Self-supervisedpretrain-
ing on our large unlabeled dataset (300,000+ images) could help develop more
domain-appropriate feature extractors. This could be particularly valuable for im-
proving perceptual diversity metrics and sampling effectiveness by learning rep-
resentations that better distinguishmeaningful microstructural variations rather
than relying on features optimized for natural images.

Our segmentation results highlight challenges in boundary delineation, partic-
ularly where feature transitions are gradual or uncertain. The significant disparity
between F1 scores (0.95-0.97) and IoU metrics (0.55-0.72) across architectures
suggests systematic issues in precise boundary localization. Future work could
explore probabilistic segmentation approaches that explicitly model prediction
uncertainty. Rather than forcing binary decisions at ambiguous boundaries, such
as crack tips or diffuse damage regions, soft predictions could better represent
the inherent uncertainty in these regions while providingmore nuanced training
signals.

A critical limitation of our current approach is treating each XCT slice inde-
pendently, ignoring the temporal and spatial coherence inherent in our volumet-
ric data. Establishing stronger temporal consistency in segmentation predictions
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could improve accuracy, particularly in regions where single-slice evidence is am-
biguous. Potential approaches include:

(1) Developing 3D attentionmechanisms that incorporate information from
adjacent slices while maintaining computational efficiency

(2) Implementingpost-processingmethods thatenforce temporalconsistency
in feature tracking and boundary predictions

(3) Creating loss functions that explicitly penalize temporal discontinuities
in segmentation outputs

These enhancements would address fundamental limitations in our current
framework while maintaining its core strength of scalable analysis withminimal
annotation requirements. By combining domain-specific self-supervised learn-
ing,uncertainty-aware segmentation,and temporal coherence constraints,we can
move towardmore robust and physically meaningful characterization of material
degradationmechanisms.



5 Conclusions

This thesis presents a comprehensive framework for automated analysis of
microstructural evolution in XCT data through the integration of deep learning,
weak supervision, and domain-informed sampling approaches. We demonstrate
four key advances inmaterials characterizationmethodology:

(1) Development of a novel quality assessment framework that unifies em-
bedding space coverage, perceptual similarity, and physical state repre-
sentation into a composite metric for evaluating sampling effectiveness
in spatiotemporal datasets. This unified approach enables quantitative
comparison of sampling strategies while accounting for both visual and
physical characteristics of material evolution.

(2) Domain-InformedDiversitySampling (DIDS)achieveshigher feature space
coverage (average sampledcosinedistance improvementof+35-45%above
baselines), broader displacement ranges (degradation state coverage of
+10-45%abovebaselines),whilemaintaining superiorperceptualdiversity
(max LPIPS: 0.358 vs ProbCover: 0.338, TypiClust: 0.324, Random: 0.315).
This balanced performance demonstrates DIDS’s effectiveness in improv-
ing degradation diversity while maintaining visual diversity.

(3) Creationof a scalableweak supervisionpipeline achievingmeanF1 scores
of 0.949 andmean IoU of 0.646 using only 90 annotated images (<0.03%)
froma300,000+ imagedataset. By leveragingCNNarchitecturalpriors and
efficient training strategies, we demonstrate that comprehensive analysis
is possible even with extremely limited annotations.

71
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(4) Demonstration of automated detection and characterization of over 5
millionmicrostructural features, including subvisible intermetallic inclu-
sions averaging 12 pixels in area, enabling comprehensive analysis of ma-
terial degradation at unprecedented scale.

The framework’s effectiveness is demonstrated through detailed characteriza-
tion of stress corrosion cracking in AlMg alloys. While current limitations include
computational demands and the need for high-quality imaging data, this work es-
tablishes a quantitative methodology for automated, large-scale microstructural
analysis that bridges the gap between XCTdata collection andmaterials character-
ization. Our integrated approach transforms previously intractablematerials char-
acterization challenges into systematic, automated analyses while maintaining
scientific rigor. These advances provide a general template for analyzingmassive
materials characterization datasets across multiple spatial and temporal scales.



6 Appendix

6.1 Equations

• TP = True Positive
• TN = True Negative
• FP = False Positive
• FN = False Negative
• A = predicted segmentationmask
• B = ground truth segmentationmask
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Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall = TP

TP + FN

F1-Score = 2× Precision× Recall
Precision+ Recall

IoU =
|A ∩B|
|A ∪B|

=
TP

TP + FP + FN

mIoU =
1

n

n∑
i=1

IoUi

Dice Loss = 1− 2× |A ∩B|
|A|+ |B|
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6.2 Tables

Table 6.1. Pretrained model preprocessing parameters for embed-
ding extraction

Parameter CLIP ResNet50 VGG-19
Shortest Edge Size 224 512 512
Resize True False False
Center Crop True False False
Rescale True True True
Normalize True True True
ImageMean Default [0.485, 0.456, 0.406] [0.485, 0.456, 0.406]
Image Std Default [0.229, 0.224, 0.225] [0.229, 0.224, 0.225]

Table 6.2. PCA parameters for embedding reduction

Parameter Value
Scaling Z-score Normaliation
Components Min to capture 95% variance

Table 6.3. UMAP parameters for embedding reduction

Parameter Value
Normalization L2
Neighbors 20
Components 30
Metric Cosine
Random State 42

Table 6.4. K-means parameters for embedding clustering

Parameter Value
N-clusters 3
Random State 42
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Table 6.5. DBSCAN parameters for embedding clustering

Parameter Value
Epsilon 0.1
Minimum Samples 5
Metric Euclidean

Table 6.6. HDBSCAN parameters for embedding clustering

Parameter Value
Epsilon 0.1
Minimum Samples 5
MinimumCluster Size 50
Metric Euclidean

Table 6.7. TypiClust sampling parameters

Parameter Value
Budget Size 10
N Clusters 10
MinimumCluster Size 5
K Nearest Neighbors 20

Table 6.8. ProbCover sampling parameters

Parameter Value
Budget Size 10
Delta (CLIP) 0.25
Delta (ResNet50) 0.3
Delta (VGG-19) 0.35
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6.3 Figures

Figure 6.1. Measured displacement of sample over time during the
slow strain tension test.
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Figure 6.2. CLIP embeddings PCA component cumulative variance.
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Figure 6.3. ResNet50 embeddings PCA component cumulative vari-
ance.
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Figure 6.4. VGG-19 embeddings PCA component cumulative vari-
ance.
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Figure 6.5. Clustering silhouette scores compared by pre-trained
model.
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Figure 6.6. Clustering silhouette scores comparedbydimensionality
reduction technique.
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Figure 6.7. Clustering Davies-Bouldin scores compared by pre-
trainedmodel.
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Figure 6.8. Clustering Davies-Bouldin scores compared by dimen-
sionality reduction technique.
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Figure 6.9. LPIPS distribution shift comparing random sampling to
diversity sampling.
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